Analysis of biased stochastic gradient descent using sequential semidefinite programs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Approximate Stochastic Gradient Using Quadratic Constraints and Sequential Semidefinite Programs

We present convergence rate analysis for the approximate stochastic gradient method, where individual gradient updates are corrupted by computation errors. We develop stochastic quadratic constraints to formulate a small linear matrix inequality (LMI) whose feasible set characterizes convergence properties of the approximate stochastic gradient. Based on this LMI condition, we develop a sequent...

متن کامل

Efficient Low-Rank Stochastic Gradient Descent Methods for Solving Semidefinite Programs

We propose a low-rank stochastic gradient descent (LR-SGD) method for solving a class of semidefinite programming (SDP) problems. LR-SGD has clear computational advantages over the standard SGD peers as its iterative projection step (a SDP problem) can be solved in an efficient manner. Specifically, LR-SGD constructs a low-rank stochastic gradient and computes an optimal solution to the project...

متن کامل

Convergence Analysis of Gradient Descent Stochastic Algorithms

This paper proves convergence of a sample-path based stochastic gradient-descent algorithm for optimizing expected-value performance measures in discrete event systems. The algorithm uses increasing precision at successive iterations, and it moves against the direction of a generalized gradient of the computed sample performance function. Two convergence results are established: one, for the ca...

متن کامل

Variational Stochastic Gradient Descent

In Bayesian approach to probabilistic modeling of data we select a model for probabilities of data that depends on a continuous vector of parameters. For a given data set Bayesian theorem gives a probability distribution of the model parameters. Then the inference of outcomes and probabilities of new data could be found by averaging over the parameter distribution of the model, which is an intr...

متن کامل

Byzantine Stochastic Gradient Descent

This paper studies the problem of distributed stochastic optimization in an adversarial setting where, out of the m machines which allegedly compute stochastic gradients every iteration, an α-fraction are Byzantine, and can behave arbitrarily and adversarially. Our main result is a variant of stochastic gradient descent (SGD) which finds ε-approximate minimizers of convex functions in T = Õ ( 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2020

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-020-01486-1